Mixed Integer Programming for Modelling Fairness Constraints

Elisabeta Iulia Dima, Amaya Nogales Gómez Laboratoire I3S, UMR 7271 Université Côte d'Azur, France

Introduction

- Morality of Machine Learning models in **real** datasets.
- Support Vector Machine (SVM) and Quadratic Programs (QP).
- Mixed Integer Programming (MIP) is NP-complete.
- Equal Opportunity constraints turn QP into MIP problem with quadratic constraints (QCQP).

Methods

The MIP optimization problem

Fairness

Here, the selected branch of Fairness is **Equal Opportunity**, i.e. The probability of getting a positive outcome \hat{y}_i is independent of protected class label g_i and conditional on the true label y_i being positive, for a relatively small deviation $\Delta \in \mathbb{R}$.

 $\begin{aligned} |\mathbb{P}(\hat{y}_i = 1 | g_i = 0, y_i = 1) - \\ \mathbb{P}(\hat{y}_i = 1 | g_i = 1, y_i = 1)| \le \Delta, \\ \forall i = 1, \dots, n \end{aligned}$

- Extraction label $\alpha_i \in \{0, 1\}$
- True label $y_i \in \{-1, +1\}$
- Protected class label $g_i \in \{0, 1\}$ (i.e., age, gender, race)
- Number of unprotected and protected individuals #N resp., #P
- Indicator function $\mathbf{1}(u)$
- Sign function sign(x)

$$\min_{w,b,\boldsymbol{\alpha},\boldsymbol{\zeta},\boldsymbol{z}} \beta \sum_{i=1}^{n} \alpha_i + (1-\beta) \left(\frac{w^T w}{2} + \frac{C}{n} \sum_{i=1}^{n} \zeta_i \right)$$

subject to

$$\frac{1}{\#P} \sum_{i \in \mathbb{P}} (1 - \alpha_i) \mathbf{1}(sign(w^T x_i + b) = +1) - \frac{1}{\#N} \sum_{i \in \mathbb{N}} (1 - \alpha_i) \mathbf{1}(sign(w^T x_i + b) = +1) | \leq \Delta$$

$$y_i(w^T x_i + b) \ge 1 - \zeta_i \qquad \forall i = \overline{1, n}$$
$$\alpha_i \in \{0, 1\} \qquad \forall i = \overline{1, n}$$
$$w \in \mathbb{R}^d$$

 $b \in \mathbb{R}$

$$\begin{array}{l} g_i, \hat{y}_i, y_i \in \{0, 1\} \\ \Delta \in \mathbb{R}^+ \end{array}$$

(2)

(3)

(4)

(5)

(6)

(7)

 $\forall i = \overline{1, n}$

Conclusions

• We propose a novel QCQP formulation to build an SVM-type classifier including fairness constraints.

• Our results show an improvement in fairness without important loss in accuracy.

• The trade-off detween time and training sample size is due to the constructed quadratic matrix. The trade between Accuracy and Equal Opportunity is eventually gentle.

· Generally, minimising extraction determines that no individual is extracted from the dataset, instead, hyperplane is skewed.

• QCQP problem can also be used to achive Equal Treatement.

Implementation and Results

	QCQP		Original SVM	
Training size	Accuracy	Equal Opportunity	Accuracy	Equal Opportun
100	70.51	100.52	69.87	98.45
500	72.24	98.25	73.12	94.66

Table 1. German dataset.

	Q	CQP	Original SVM	
Training size	Accuracy	Equal Opportunity	Accuracy	Equal Opportuni
100	60.82	99.28	60.55	91.39
500	64.57	79.69	64.74	79.81

Table 2. COMPAS dataset.

Tables 1 and 2: QCQP-SVM metrics(left) vs. original SVM(right) $\beta = 0.5$, time limit 10m. For size 100: $\Delta = 0.001$, for size 500: $\Delta = 0.05$.

References

- [1] M. Olfat and A. Aswani. Spectral algorithms for computing fair support vector machines. PMLR, 2018.
- [2] IBM ILOG Cplex. International Business Machines Corporation, 46(53):157, 2009.

This work has been supported by the French government, through the UCA DS4H Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-17-EURE-0004.